Industry Standards Benchmarks
Establishing industry-standard benchmarks is crucial for evaluating agent memory systems against recognized performance criteria. This guide provides comprehensive benchmarking methodologies based on established industry standards, frameworks, and best practices for agent memory evaluation.
Overview
Industry standards provide objective criteria for measuring agent memory performance, enabling meaningful comparisons across systems and establishing performance baselines. These benchmarks cover accuracy, efficiency, scalability, and reliability metrics aligned with industry expectations.
Information Retrieval Standards
TREC Evaluation Framework
import json
import numpy as np
from typing import List, Dict, Tuple, Set
from dataclasses import dataclass
from collections import defaultdict
@dataclass
class TRECResult:
query_id: str
doc_id: str
rank: int
score: float
run_id: str
class TRECBenchmark:
def __init__(self, collection_name: str = "trec_memory"):
self.collection_name = collection_name
self.official_metrics = [
'map', 'gm_map', 'bpref', 'recip_rank', 'P_5', 'P_10', 'P_15', 'P_20', 'P_30',
'P_100', 'P_200', 'P_500', 'P_1000', 'recall_5', 'recall_10', 'recall_15',
'recall_20', 'recall_30', 'recall_100', 'recall_200', 'recall_500', 'recall_1000',
'ndcg', 'ndcg_cut_5', 'ndcg_cut_10', 'ndcg_cut_15', 'ndcg_cut_20', 'ndcg_cut_30',
'ndcg_cut_100', 'ndcg_cut_200', 'ndcg_cut_500', 'ndcg_cut_1000'
]
def run_official_trec_evaluation(self, retrieval_system, topic_set: str = "2023"):
"""
Run official TREC evaluation protocol on agent memory system
Args:
retrieval_system: Agent memory system to evaluate
topic_set: TREC topic set year (e.g., "2023", "2022")
"""
# Load official TREC topics and qrels
topics = self._load_trec_topics(topic_set)
qrels = self._load_trec_qrels(topic_set)
# Generate retrieval results
trec_results = []
for topic in topics:
query_id = topic['id']
query_text = topic['title'] + " " + topic.get('description', '')
# Retrieve documents using the memory system
retrieved_docs = retrieval_system.retrieve(query_text, top_k=1000)
# Convert to TREC format
for rank, doc in enumerate(retrieved_docs, 1):
result = TRECResult(
query_id=query_id,
doc_id=doc.id,
rank=rank,
score=doc.score,
run_id=f"{self.collection_name}_run"
)
trec_results.append(result)
# Save results in TREC format
results_file = f"trec_results_{topic_set}.txt"
self._save_trec_results(trec_results, results_file)
# Evaluate using trec_eval
evaluation_metrics = self._run_trec_eval(results_file, qrels)
return evaluation_metrics
def _load_trec_topics(self, topic_set: str):
"""Load TREC topics for evaluation"""
# This would load from official TREC topic files
# For demonstration, we'll create sample topics
sample_topics = [
{
'id': '1',
'title': 'machine learning algorithms',
'description': 'What are the most effective machine learning algorithms for classification tasks?',
'narrative': 'Relevant documents should discuss various machine learning algorithms...'
},
{
'id': '2',
'title': 'neural network optimization',
'description': 'How can neural networks be optimized for better performance?',
'narrative': 'Documents about optimization techniques for neural networks are relevant...'
},
# Add more topics based on actual TREC data
]
print(f"Loaded {len(sample_topics)} TREC topics for evaluation")
return sample_topics
def _load_trec_qrels(self, topic_set: str):
"""Load TREC qrels (query relevance judgments)"""
# This would load from official TREC qrels files
# Format: query_id 0 doc_id relevance_level
sample_qrels = {
'1': {
'doc_001': 2, # Highly relevant
'doc_002': 1, # Partially relevant
'doc_003': 0, # Not relevant
'doc_004': 2 # Highly relevant
},
'2': {
'doc_005': 1,
'doc_006': 2,
'doc_007': 0,
'doc_008': 1
}
}
print(f"Loaded qrels for {len(sample_qrels)} queries")
return sample_qrels
def _save_trec_results(self, results: List[TRECResult], filename: str):
"""Save results in official TREC format"""
with open(filename, 'w') as f:
for result in results:
# TREC format: query_id Q0 doc_id rank score run_id
f.write(f"{result.query_id} Q0 {result.doc_id} {result.rank} {result.score} {result.run_id}\n")
def _run_trec_eval(self, results_file: str, qrels: Dict):
"""Run official trec_eval evaluation"""
# This would call the official trec_eval binary
# For demonstration, we'll implement basic metrics
evaluation_results = {}
# Parse results file
results_by_query = defaultdict(list)
with open(results_file, 'r') as f:
for line in f:
parts = line.strip().split()
query_id = parts[0]
doc_id = parts[2]
rank = int(parts[3])
score = float(parts[4])
results_by_query[query_id].append({
'doc_id': doc_id,
'rank': rank,
'score': score
})
# Calculate metrics for each query
query_metrics = {}
for query_id, query_results in results_by_query.items():
if query_id not in qrels:
continue
query_qrels = qrels[query_id]
query_metrics[query_id] = self._calculate_query_metrics(query_results, query_qrels)
# Aggregate metrics across queries
for metric in self.official_metrics:
metric_values = [qm.get(metric, 0) for qm in query_metrics.values()]
evaluation_results[metric] = np.mean(metric_values) if metric_values else 0
evaluation_results['num_queries'] = len(query_metrics)
evaluation_results['query_metrics'] = query_metrics
return evaluation_results
def _calculate_query_metrics(self, results: List[Dict], qrels: Dict):
"""Calculate metrics for a single query"""
metrics = {}
# Sort results by rank
results.sort(key=lambda x: x['rank'])
# Calculate precision at different cutoffs
for k in [5, 10, 15, 20, 30, 100, 200, 500, 1000]:
if k <= len(results):
top_k_docs = results[:k]
relevant_retrieved = sum(1 for doc in top_k_docs
if doc['doc_id'] in qrels and qrels[doc['doc_id']] > 0)
metrics[f'P_{k}'] = relevant_retrieved / k
else:
metrics[f'P_{k}'] = 0
# Calculate recall at different cutoffs
total_relevant = sum(1 for relevance in qrels.values() if relevance > 0)
for k in [5, 10, 15, 20, 30, 100, 200, 500, 1000]:
if k <= len(results) and total_relevant > 0:
top_k_docs = results[:k]
relevant_retrieved = sum(1 for doc in top_k_docs
if doc['doc_id'] in qrels and qrels[doc['doc_id']] > 0)
metrics[f'recall_{k}'] = relevant_retrieved / total_relevant
else:
metrics[f'recall_{k}'] = 0
# Calculate Average Precision (AP)
ap = self._calculate_average_precision(results, qrels)
metrics['map'] = ap
# Calculate NDCG
for k in [5, 10, 15, 20, 30, 100, 200, 500, 1000]:
ndcg_k = self._calculate_ndcg_at_k(results, qrels, k)
metrics[f'ndcg_cut_{k}'] = ndcg_k
# Calculate overall NDCG
metrics['ndcg'] = self._calculate_ndcg_at_k(results, qrels, len(results))
# Calculate reciprocal rank
metrics['recip_rank'] = self._calculate_reciprocal_rank(results, qrels)
# Calculate bpref
metrics['bpref'] = self._calculate_bpref(results, qrels)
return metrics
def _calculate_average_precision(self, results: List[Dict], qrels: Dict):
"""Calculate Average Precision for a query"""
relevant_retrieved = 0
ap_sum = 0
for i, result in enumerate(results):
doc_id = result['doc_id']
if doc_id in qrels and qrels[doc_id] > 0:
relevant_retrieved += 1
precision_at_i = relevant_retrieved / (i + 1)
ap_sum += precision_at_i
total_relevant = sum(1 for relevance in qrels.values() if relevance > 0)
return ap_sum / total_relevant if total_relevant > 0 else 0
def _calculate_ndcg_at_k(self, results: List[Dict], qrels: Dict, k: int):
"""Calculate NDCG@k"""
import math
# DCG@k
dcg = 0
for i, result in enumerate(results[:k]):
doc_id = result['doc_id']
relevance = qrels.get(doc_id, 0)
if i == 0:
dcg += relevance
else:
dcg += relevance / math.log2(i + 1)
# IDCG@k (ideal DCG)
ideal_relevances = sorted(qrels.values(), reverse=True)[:k]
idcg = 0
for i, relevance in enumerate(ideal_relevances):
if i == 0:
idcg += relevance
else:
idcg += relevance / math.log2(i + 1)
return dcg / idcg if idcg > 0 else 0
def _calculate_reciprocal_rank(self, results: List[Dict], qrels: Dict):
"""Calculate Reciprocal Rank (RR)"""
for i, result in enumerate(results):
doc_id = result['doc_id']
if doc_id in qrels and qrels[doc_id] > 0:
return 1 / (i + 1)
return 0
def _calculate_bpref(self, results: List[Dict], qrels: Dict):
"""Calculate Binary Preference (bpref)"""
relevant_docs = [doc_id for doc_id, rel in qrels.items() if rel > 0]
non_relevant_docs = [doc_id for doc_id, rel in qrels.items() if rel == 0]
if not relevant_docs:
return 0
bpref_sum = 0
for rel_doc in relevant_docs:
# Find rank of relevant document
rel_rank = None
for i, result in enumerate(results):
if result['doc_id'] == rel_doc:
rel_rank = i
break
if rel_rank is not None:
# Count non-relevant docs ranked higher
higher_non_rel = 0
for i in range(rel_rank):
if results[i]['doc_id'] in non_relevant_docs:
higher_non_rel += 1
# bpref contribution
max_non_rel = min(len(non_relevant_docs), len(relevant_docs))
bpref_sum += 1 - (higher_non_rel / max_non_rel) if max_non_rel > 0 else 1
return bpref_sum / len(relevant_docs)
# Example usage
trec_benchmark = TRECBenchmark("agent_memory_system")
# This would be your actual retrieval system
class MockRetrievalSystem:
def retrieve(self, query, top_k=1000):
# Mock implementation - replace with your actual system
return [
type('Doc', (), {'id': f'doc_{i:03d}', 'score': 1.0 - i * 0.001})()
for i in range(1, top_k + 1)
]
# Run TREC evaluation
mock_system = MockRetrievalSystem()
trec_results = trec_benchmark.run_official_trec_evaluation(mock_system, "2023")
print("TREC Evaluation Results:")
for metric, value in trec_results.items():
if isinstance(value, float):
print(f"{metric}: {value:.4f}")BEIR Benchmark Compliance
class BEIRStandardBenchmark:
def __init__(self):
self.beir_datasets = [
'trec-covid', 'nfcorpus', 'nq', 'hotpotqa', 'fiqa', 'arguana',
'webis-touche2020', 'cqadupstack', 'quora', 'dbpedia-entity',
'scidocs', 'fever', 'climate-fever', 'scifact', 'robust04'
]
self.standard_metrics = ['NDCG@10', 'MAP', 'Recall@100', 'Precision@10']
def run_beir_evaluation_suite(self, retrieval_system, datasets: List[str] = None):
"""
Run comprehensive BEIR evaluation across multiple datasets
Args:
retrieval_system: System to evaluate
datasets: List of BEIR datasets to use (default: all)
"""
if datasets is None:
datasets = self.beir_datasets
overall_results = {}
dataset_results = {}
for dataset_name in datasets:
print(f"Evaluating on {dataset_name}...")
try:
dataset_result = self._evaluate_single_beir_dataset(
retrieval_system, dataset_name
)
dataset_results[dataset_name] = dataset_result
# Aggregate for overall score
for metric in self.standard_metrics:
if metric not in overall_results:
overall_results[metric] = []
overall_results[metric].append(dataset_result.get(metric, 0))
except Exception as e:
print(f"Error evaluating {dataset_name}: {e}")
continue
# Calculate overall scores
aggregated_results = {}
for metric, values in overall_results.items():
aggregated_results[f'{metric}_mean'] = np.mean(values)
aggregated_results[f'{metric}_std'] = np.std(values)
return {
'aggregated_results': aggregated_results,
'dataset_results': dataset_results,
'datasets_evaluated': len(dataset_results),
'beir_score': self._calculate_beir_score(aggregated_results)
}
def _evaluate_single_beir_dataset(self, retrieval_system, dataset_name: str):
"""Evaluate on a single BEIR dataset"""
from beir import util, LoggingHandler
from beir.datasets.data_loader import GenericDataLoader
from beir.retrieval.evaluation import EvaluateRetrieval
# Download and load dataset
dataset_path = util.download_and_unzip(dataset_name, "datasets")
corpus, queries, qrels = GenericDataLoader(dataset_path).load(split="test")
# Create retrieval wrapper for BEIR
class BEIRRetrievalWrapper:
def __init__(self, system):
self.system = system
def search(self, corpus, queries, top_k, *args, **kwargs):
results = {}
for query_id, query_text in queries.items():
retrieved_docs = self.system.retrieve(query_text, top_k=top_k)
# Convert to BEIR format
results[query_id] = {}
for doc in retrieved_docs:
results[query_id][doc.id] = doc.score
return results
# Run evaluation
retrieval_wrapper = BEIRRetrievalWrapper(retrieval_system)
evaluator = EvaluateRetrieval(retrieval_wrapper)
# Evaluate with standard metrics
results = evaluator.evaluate(corpus, queries, qrels)
return results
def _calculate_beir_score(self, aggregated_results: Dict):
"""Calculate overall BEIR score"""
# Standard BEIR scoring uses average of NDCG@10 across datasets
ndcg_10_mean = aggregated_results.get('NDCG@10_mean', 0)
return ndcg_10_mean
def generate_beir_report(self, results: Dict):
"""Generate BEIR evaluation report"""
report = ["# BEIR Standard Evaluation Report\n"]
# Overall performance
report.append("## Overall Performance")
aggregated = results['aggregated_results']
for metric in self.standard_metrics:
mean_key = f'{metric}_mean'
std_key = f'{metric}_std'
if mean_key in aggregated:
report.append(f"- **{metric}**: {aggregated[mean_key]:.4f} ± {aggregated[std_key]:.4f}")
report.append(f"\n**BEIR Score**: {results['beir_score']:.4f}")
# Per-dataset breakdown
report.append("\n## Per-Dataset Results")
report.append("| Dataset | NDCG@10 | MAP | Recall@100 | Precision@10 |")
report.append("|---------|---------|-----|------------|--------------|")
for dataset, metrics in results['dataset_results'].items():
ndcg = metrics.get('NDCG@10', 0)
map_score = metrics.get('MAP', 0)
recall = metrics.get('Recall@100', 0)
precision = metrics.get('Precision@10', 0)
report.append(f"| {dataset} | {ndcg:.4f} | {map_score:.4f} | {recall:.4f} | {precision:.4f} |")
return "\n".join(report)
# Example usage
beir_benchmark = BEIRStandardBenchmark()
# Run BEIR evaluation (with subset for demo)
test_datasets = ['scifact', 'nfcorpus', 'arguana']
beir_results = beir_benchmark.run_beir_evaluation_suite(
your_retrieval_system, datasets=test_datasets
)
# Generate report
beir_report = beir_benchmark.generate_beir_report(beir_results)
print(beir_report)
print(f"\nBEIR Score: {beir_results['beir_score']:.4f}")Performance Standards
MLOps Performance Benchmarks
class MLOpsPerformanceBenchmark:
def __init__(self):
self.performance_standards = {
'latency': {
'p50_ms': 100, # 50th percentile
'p95_ms': 300, # 95th percentile
'p99_ms': 1000 # 99th percentile
},
'throughput': {
'min_qps': 10, # Queries per second
'target_qps': 100,
'max_qps': 1000
},
'availability': {
'uptime_percent': 99.9,
'error_rate_percent': 0.1
},
'accuracy': {
'min_precision': 0.8,
'min_recall': 0.7,
'min_f1': 0.75
}
}
def benchmark_against_standards(self, memory_system, test_duration_seconds: int = 3600):
"""
Benchmark agent memory system against MLOps standards
Args:
memory_system: System to benchmark
test_duration_seconds: Duration to run benchmark
"""
print(f"Running MLOps benchmark for {test_duration_seconds} seconds...")
# Run comprehensive performance test
performance_results = self._run_performance_test(memory_system, test_duration_seconds)
# Evaluate against standards
compliance_results = self._evaluate_compliance(performance_results)
return {
'performance_results': performance_results,
'compliance_results': compliance_results,
'overall_compliance': self._calculate_overall_compliance(compliance_results)
}
def _run_performance_test(self, memory_system, duration: int):
"""Run comprehensive performance test"""
import threading
import time
from concurrent.futures import ThreadPoolExecutor
from queue import Queue
# Metrics collection
latencies = []
errors = []
successful_operations = 0
start_time = time.time()
metrics_queue = Queue()
def worker():
"""Worker thread for performance testing"""
nonlocal successful_operations
while time.time() - start_time < duration:
operation_start = time.time()
try:
# Perform test operation
query = f"test query {np.random.randint(1000)}"
results = memory_system.retrieve_similar(query, top_k=10)
operation_end = time.time()
latency = operation_end - operation_start
metrics_queue.put({
'type': 'latency',
'value': latency,
'timestamp': operation_end
})
successful_operations += 1
except Exception as e:
metrics_queue.put({
'type': 'error',
'value': str(e),
'timestamp': time.time()
})
# Small delay to avoid overwhelming the system
time.sleep(0.01)
# Start worker threads
num_workers = 10
with ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = [executor.submit(worker) for _ in range(num_workers)]
# Collect metrics while test is running
while time.time() - start_time < duration:
try:
metric = metrics_queue.get(timeout=1)
if metric['type'] == 'latency':
latencies.append(metric['value'])
elif metric['type'] == 'error':
errors.append(metric)
except:
continue
# Wait for all workers to complete
for future in futures:
future.result()
total_time = time.time() - start_time
total_operations = successful_operations + len(errors)
# Calculate performance metrics
return {
'latency_stats': {
'p50_ms': np.percentile(latencies, 50) * 1000 if latencies else 0,
'p95_ms': np.percentile(latencies, 95) * 1000 if latencies else 0,
'p99_ms': np.percentile(latencies, 99) * 1000 if latencies else 0,
'mean_ms': np.mean(latencies) * 1000 if latencies else 0
},
'throughput_stats': {
'qps': successful_operations / total_time if total_time > 0 else 0,
'total_operations': total_operations,
'successful_operations': successful_operations
},
'reliability_stats': {
'error_rate_percent': (len(errors) / total_operations * 100) if total_operations > 0 else 0,
'success_rate_percent': (successful_operations / total_operations * 100) if total_operations > 0 else 0,
'total_errors': len(errors)
},
'test_duration': total_time
}
def _evaluate_compliance(self, performance_results: Dict):
"""Evaluate compliance against standards"""
compliance = {}
# Latency compliance
latency_results = performance_results['latency_stats']
latency_standards = self.performance_standards['latency']
compliance['latency'] = {
'p50_compliant': latency_results['p50_ms'] <= latency_standards['p50_ms'],
'p95_compliant': latency_results['p95_ms'] <= latency_standards['p95_ms'],
'p99_compliant': latency_results['p99_ms'] <= latency_standards['p99_ms'],
'actual_p50': latency_results['p50_ms'],
'actual_p95': latency_results['p95_ms'],
'actual_p99': latency_results['p99_ms']
}
# Throughput compliance
throughput_results = performance_results['throughput_stats']
throughput_standards = self.performance_standards['throughput']
compliance['throughput'] = {
'min_qps_met': throughput_results['qps'] >= throughput_standards['min_qps'],
'target_qps_met': throughput_results['qps'] >= throughput_standards['target_qps'],
'actual_qps': throughput_results['qps']
}
# Reliability compliance
reliability_results = performance_results['reliability_stats']
reliability_standards = self.performance_standards['availability']
compliance['reliability'] = {
'error_rate_acceptable': reliability_results['error_rate_percent'] <= reliability_standards['error_rate_percent'],
'actual_error_rate': reliability_results['error_rate_percent'],
'uptime_equivalent': 100 - reliability_results['error_rate_percent']
}
return compliance
def _calculate_overall_compliance(self, compliance_results: Dict):
"""Calculate overall compliance score"""
checks = []
# Latency checks
latency = compliance_results['latency']
checks.extend([
latency['p50_compliant'],
latency['p95_compliant'],
latency['p99_compliant']
])
# Throughput checks
throughput = compliance_results['throughput']
checks.extend([
throughput['min_qps_met'],
throughput['target_qps_met']
])
# Reliability checks
reliability = compliance_results['reliability']
checks.append(reliability['error_rate_acceptable'])
# Calculate compliance percentage
compliance_score = sum(checks) / len(checks)
return {
'compliance_percentage': compliance_score * 100,
'total_checks': len(checks),
'passed_checks': sum(checks),
'is_compliant': compliance_score >= 0.8 # 80% threshold
}
def generate_compliance_report(self, benchmark_results: Dict):
"""Generate MLOps compliance report"""
perf = benchmark_results['performance_results']
comp = benchmark_results['compliance_results']
overall = benchmark_results['overall_compliance']
report = ["# MLOps Performance Compliance Report\n"]
# Overall compliance
report.append("## Overall Compliance")
report.append(f"- **Compliance Score**: {overall['compliance_percentage']:.1f}%")
report.append(f"- **Checks Passed**: {overall['passed_checks']}/{overall['total_checks']}")
report.append(f"- **Status**: {'✅ COMPLIANT' if overall['is_compliant'] else '❌ NON-COMPLIANT'}")
# Latency compliance
report.append("\n## Latency Compliance")
latency_comp = comp['latency']
latency_std = self.performance_standards['latency']
report.append(f"- **P50 Latency**: {latency_comp['actual_p50']:.1f}ms (target: {latency_std['p50_ms']}ms) "
f"{'✅' if latency_comp['p50_compliant'] else '❌'}")
report.append(f"- **P95 Latency**: {latency_comp['actual_p95']:.1f}ms (target: {latency_std['p95_ms']}ms) "
f"{'✅' if latency_comp['p95_compliant'] else '❌'}")
report.append(f"- **P99 Latency**: {latency_comp['actual_p99']:.1f}ms (target: {latency_std['p99_ms']}ms) "
f"{'✅' if latency_comp['p99_compliant'] else '❌'}")
# Throughput compliance
report.append("\n## Throughput Compliance")
throughput_comp = comp['throughput']
throughput_std = self.performance_standards['throughput']
report.append(f"- **Actual QPS**: {throughput_comp['actual_qps']:.1f}")
report.append(f"- **Min QPS Met**: {'✅' if throughput_comp['min_qps_met'] else '❌'} "
f"(target: {throughput_std['min_qps']})")
report.append(f"- **Target QPS Met**: {'✅' if throughput_comp['target_qps_met'] else '❌'} "
f"(target: {throughput_std['target_qps']})")
# Reliability compliance
report.append("\n## Reliability Compliance")
reliability_comp = comp['reliability']
reliability_std = self.performance_standards['availability']
report.append(f"- **Error Rate**: {reliability_comp['actual_error_rate']:.2f}% "
f"(target: <{reliability_std['error_rate_percent']}%) "
f"{'✅' if reliability_comp['error_rate_acceptable'] else '❌'}")
report.append(f"- **Effective Uptime**: {reliability_comp['uptime_equivalent']:.2f}%")
return "\n".join(report)
# Example usage
mlops_benchmark = MLOpsPerformanceBenchmark()
# Run MLOps compliance benchmark
mlops_results = mlops_benchmark.benchmark_against_standards(
your_memory_system, test_duration_seconds=300 # 5 minutes for demo
)
# Generate compliance report
compliance_report = mlops_benchmark.generate_compliance_report(mlops_results)
print(compliance_report)
# Check overall compliance
if mlops_results['overall_compliance']['is_compliant']:
print("\n🎉 System is MLOps compliant!")
else:
print("\n⚠️ System needs improvement to meet MLOps standards")Scalability Standards
Cloud-Native Benchmarks
class CloudNativeScalabilityBenchmark:
def __init__(self):
self.scalability_standards = {
'horizontal_scaling': {
'max_scale_out_factor': 10, # Can scale to 10x instances
'scale_out_time_seconds': 300, # Scale out within 5 minutes
'scale_in_time_seconds': 180, # Scale in within 3 minutes
},
'resource_efficiency': {
'cpu_utilization_target': 0.7, # 70% CPU utilization
'memory_utilization_target': 0.8, # 80% memory utilization
'storage_efficiency': 0.85 # 85% storage efficiency
},
'fault_tolerance': {
'recovery_time_seconds': 120, # Recover within 2 minutes
'data_durability': 0.999999, # 99.9999% durability
'availability_sla': 0.999 # 99.9% availability
}
}
def benchmark_cloud_native_capabilities(self, deployment_config: Dict):
"""
Benchmark cloud-native scalability and resilience
Args:
deployment_config: Configuration for cloud deployment
"""
results = {}
# Test horizontal scaling
print("Testing horizontal scaling...")
scaling_results = self._test_horizontal_scaling(deployment_config)
results['horizontal_scaling'] = scaling_results
# Test resource efficiency
print("Testing resource efficiency...")
efficiency_results = self._test_resource_efficiency(deployment_config)
results['resource_efficiency'] = efficiency_results
# Test fault tolerance
print("Testing fault tolerance...")
fault_tolerance_results = self._test_fault_tolerance(deployment_config)
results['fault_tolerance'] = fault_tolerance_results
# Evaluate compliance
compliance = self._evaluate_cloud_native_compliance(results)
results['compliance'] = compliance
return results
def _test_horizontal_scaling(self, deployment_config: Dict):
"""Test horizontal scaling capabilities"""
import time
scaling_results = {
'scale_out_tests': [],
'scale_in_tests': [],
'load_distribution_tests': []
}
# Simulate scale-out test
for scale_factor in [2, 5, 10]:
print(f"Testing scale-out to {scale_factor}x instances...")
start_time = time.time()
# Simulate scaling operation
scale_out_successful = self._simulate_scale_operation(
deployment_config, 'out', scale_factor
)
scale_out_time = time.time() - start_time
scaling_results['scale_out_tests'].append({
'scale_factor': scale_factor,
'scale_time_seconds': scale_out_time,
'successful': scale_out_successful,
'meets_standard': scale_out_time <= self.scalability_standards['horizontal_scaling']['scale_out_time_seconds']
})
# Test load distribution after scaling
if scale_out_successful:
load_distribution = self._test_load_distribution(deployment_config, scale_factor)
scaling_results['load_distribution_tests'].append({
'scale_factor': scale_factor,
'load_distribution_variance': load_distribution
})
# Simulate scale-in test
for scale_factor in [5, 2, 1]:
print(f"Testing scale-in to {scale_factor}x instances...")
start_time = time.time()
scale_in_successful = self._simulate_scale_operation(
deployment_config, 'in', scale_factor
)
scale_in_time = time.time() - start_time
scaling_results['scale_in_tests'].append({
'scale_factor': scale_factor,
'scale_time_seconds': scale_in_time,
'successful': scale_in_successful,
'meets_standard': scale_in_time <= self.scalability_standards['horizontal_scaling']['scale_in_time_seconds']
})
return scaling_results
def _test_resource_efficiency(self, deployment_config: Dict):
"""Test resource utilization efficiency"""
efficiency_results = {}
# Simulate resource monitoring
resource_metrics = self._simulate_resource_monitoring(deployment_config)
# Calculate efficiency metrics
efficiency_results['cpu_efficiency'] = {
'average_utilization': resource_metrics['cpu']['average'],
'peak_utilization': resource_metrics['cpu']['peak'],
'meets_target': abs(resource_metrics['cpu']['average'] - self.scalability_standards['resource_efficiency']['cpu_utilization_target']) <= 0.1
}
efficiency_results['memory_efficiency'] = {
'average_utilization': resource_metrics['memory']['average'],
'peak_utilization': resource_metrics['memory']['peak'],
'meets_target': abs(resource_metrics['memory']['average'] - self.scalability_standards['resource_efficiency']['memory_utilization_target']) <= 0.1
}
efficiency_results['storage_efficiency'] = {
'utilization': resource_metrics['storage']['utilization'],
'compression_ratio': resource_metrics['storage']['compression_ratio'],
'meets_target': resource_metrics['storage']['utilization'] >= self.scalability_standards['resource_efficiency']['storage_efficiency']
}
return efficiency_results
def _test_fault_tolerance(self, deployment_config: Dict):
"""Test fault tolerance and recovery capabilities"""
fault_tolerance_results = {
'recovery_tests': [],
'data_durability_tests': [],
'availability_tests': []
}
# Test recovery from different failure scenarios
failure_scenarios = ['instance_failure', 'network_partition', 'storage_failure']
for scenario in failure_scenarios:
print(f"Testing recovery from {scenario}...")
# Simulate failure
failure_start = time.time()
self._simulate_failure(deployment_config, scenario)
# Measure recovery time
recovery_time = self._measure_recovery_time(deployment_config, scenario)
recovery_end = time.time()
total_recovery_time = recovery_end - failure_start
fault_tolerance_results['recovery_tests'].append({
'scenario': scenario,
'recovery_time_seconds': total_recovery_time,
'meets_standard': total_recovery_time <= self.scalability_standards['fault_tolerance']['recovery_time_seconds'],
'data_loss': self._check_data_loss(deployment_config, scenario)
})
# Test data durability
durability_result = self._test_data_durability(deployment_config)
fault_tolerance_results['data_durability_tests'] = durability_result
# Test availability under various conditions
availability_result = self._test_availability(deployment_config)
fault_tolerance_results['availability_tests'] = availability_result
return fault_tolerance_results
def _simulate_scale_operation(self, config: Dict, direction: str, scale_factor: int):
"""Simulate scaling operation"""
import time
# Simulate scaling delay
base_delay = 30 # Base 30 seconds for scaling
scale_delay = scale_factor * 10 # Additional delay based on scale
time.sleep(min(base_delay + scale_delay, 300) / 60) # Scale down for demo
# Simulate success/failure (90% success rate)
return np.random.random() > 0.1
def _test_load_distribution(self, config: Dict, scale_factor: int):
"""Test load distribution across scaled instances"""
# Simulate load measurements across instances
instance_loads = np.random.normal(0.7, 0.1, scale_factor) # Mean 70% utilization
# Calculate variance in load distribution
load_variance = np.var(instance_loads)
return load_variance
def _simulate_resource_monitoring(self, config: Dict):
"""Simulate resource monitoring data"""
return {
'cpu': {
'average': np.random.normal(0.68, 0.05), # Around 68% average
'peak': np.random.normal(0.85, 0.1) # Around 85% peak
},
'memory': {
'average': np.random.normal(0.78, 0.08), # Around 78% average
'peak': np.random.normal(0.92, 0.05) # Around 92% peak
},
'storage': {
'utilization': np.random.normal(0.87, 0.03), # Around 87% utilization
'compression_ratio': np.random.normal(2.5, 0.2) # 2.5x compression
}
}
def _simulate_failure(self, config: Dict, scenario: str):
"""Simulate different failure scenarios"""
print(f"Simulating {scenario}...")
time.sleep(1) # Simulate failure occurrence
def _measure_recovery_time(self, config: Dict, scenario: str):
"""Measure recovery time from failure"""
# Simulate recovery process
recovery_times = {
'instance_failure': np.random.normal(90, 20), # ~90 seconds
'network_partition': np.random.normal(45, 10), # ~45 seconds
'storage_failure': np.random.normal(150, 30) # ~150 seconds
}
return max(recovery_times.get(scenario, 120), 10) # Minimum 10 seconds
def _check_data_loss(self, config: Dict, scenario: str):
"""Check for data loss after failure"""
# Simulate data integrity check
data_loss_probability = {
'instance_failure': 0.01, # 1% chance
'network_partition': 0.001, # 0.1% chance
'storage_failure': 0.05 # 5% chance
}
return np.random.random() < data_loss_probability.get(scenario, 0.01)
def _test_data_durability(self, config: Dict):
"""Test data durability over time"""
# Simulate data durability measurement
total_objects = 1000000
lost_objects = np.random.poisson(1) # Very low loss rate
durability = 1 - (lost_objects / total_objects)
return {
'measured_durability': durability,
'meets_standard': durability >= self.scalability_standards['fault_tolerance']['data_durability'],
'total_objects_tested': total_objects,
'objects_lost': lost_objects
}
def _test_availability(self, config: Dict):
"""Test system availability"""
# Simulate availability measurement over time period
total_time_hours = 24 * 30 # 30 days
downtime_minutes = np.random.exponential(5) # Average 5 minutes downtime
availability = 1 - (downtime_minutes / (total_time_hours * 60))
return {
'measured_availability': availability,
'meets_standard': availability >= self.scalability_standards['fault_tolerance']['availability_sla'],
'total_time_hours': total_time_hours,
'downtime_minutes': downtime_minutes
}
def _evaluate_cloud_native_compliance(self, results: Dict):
"""Evaluate compliance with cloud-native standards"""
compliance_checks = []
# Horizontal scaling compliance
scaling_results = results['horizontal_scaling']
# Check if can scale to at least 10x
max_successful_scale = max([t['scale_factor'] for t in scaling_results['scale_out_tests'] if t['successful']], default=1)
compliance_checks.append(max_successful_scale >= self.scalability_standards['horizontal_scaling']['max_scale_out_factor'])
# Check scaling time compliance
scale_out_times_compliant = all([t['meets_standard'] for t in scaling_results['scale_out_tests'] if t['successful']])
scale_in_times_compliant = all([t['meets_standard'] for t in scaling_results['scale_in_tests'] if t['successful']])
compliance_checks.extend([scale_out_times_compliant, scale_in_times_compliant])
# Resource efficiency compliance
efficiency_results = results['resource_efficiency']
compliance_checks.extend([
efficiency_results['cpu_efficiency']['meets_target'],
efficiency_results['memory_efficiency']['meets_target'],
efficiency_results['storage_efficiency']['meets_target']
])
# Fault tolerance compliance
fault_tolerance_results = results['fault_tolerance']
recovery_compliant = all([t['meets_standard'] for t in fault_tolerance_results['recovery_tests']])
durability_compliant = fault_tolerance_results['data_durability_tests']['meets_standard']
availability_compliant = fault_tolerance_results['availability_tests']['meets_standard']
compliance_checks.extend([recovery_compliant, durability_compliant, availability_compliant])
# Calculate overall compliance
overall_compliance = sum(compliance_checks) / len(compliance_checks)
return {
'compliance_percentage': overall_compliance * 100,
'total_checks': len(compliance_checks),
'passed_checks': sum(compliance_checks),
'is_cloud_native_compliant': overall_compliance >= 0.8,
'detailed_checks': {
'horizontal_scaling': scale_out_times_compliant and scale_in_times_compliant,
'resource_efficiency': all([
efficiency_results['cpu_efficiency']['meets_target'],
efficiency_results['memory_efficiency']['meets_target'],
efficiency_results['storage_efficiency']['meets_target']
]),
'fault_tolerance': recovery_compliant and durability_compliant and availability_compliant
}
}
# Example usage
cloud_benchmark = CloudNativeScalabilityBenchmark()
# Configure deployment for testing
deployment_config = {
'platform': 'kubernetes',
'min_replicas': 1,
'max_replicas': 20,
'resource_requests': {'cpu': '500m', 'memory': '1Gi'},
'resource_limits': {'cpu': '2000m', 'memory': '4Gi'}
}
# Run cloud-native benchmark
cloud_results = cloud_benchmark.benchmark_cloud_native_capabilities(deployment_config)
# Check compliance
compliance = cloud_results['compliance']
print(f"Cloud-Native Compliance: {compliance['compliance_percentage']:.1f}%")
if compliance['is_cloud_native_compliant']:
print("✅ System meets cloud-native standards!")
else:
print("❌ System needs improvements for cloud-native compliance")
# Show which areas need work
for area, compliant in compliance['detailed_checks'].items():
status = "✅" if compliant else "❌"
print(f" {area}: {status}")Best Practices for Industry Standards
Benchmark Implementation Guidelines
- Standardization: Always use established benchmarks like TREC, BEIR, or domain-specific standards
- Reproducibility: Ensure benchmarks are reproducible with documented datasets and procedures
- Comprehensive Coverage: Test across multiple dimensions (accuracy, performance, scalability)
- Regular Updates: Update benchmark datasets and standards as industry evolves
- Transparency: Publish detailed benchmark results and methodologies
Compliance Monitoring
- Continuous Benchmarking: Integrate benchmarks into CI/CD pipelines
- Regression Detection: Monitor for performance regressions over time
- Comparative Analysis: Compare against competitor and industry baselines
- Stakeholder Communication: Provide clear compliance reports for stakeholders
Performance Optimization
- Identify Bottlenecks: Use benchmark results to identify specific improvement areas
- Iterative Improvement: Make incremental improvements and re-benchmark
- Cost-Benefit Analysis: Balance performance improvements with implementation costs
- User Impact Focus: Prioritize optimizations that most impact user experience
This comprehensive industry standards benchmarking guide ensures your agent memory system meets and exceeds recognized performance criteria, enabling confident deployment in production environments.