Entity Resolution & Disambiguation
Entity resolution is the process of identifying when different references point to the same real-world entity, while disambiguation determines which specific entity is being referenced when multiple possibilities exist. In agent memory systems, these capabilities are essential for maintaining coherent knowledge representations and enabling sophisticated reasoning about people, places, concepts, and objects across conversations.
Understanding Entity Resolution
What Are Entities?
Person Entities
- Individual people (users, colleagues, family members)
- Roles and titles (manager, doctor, customer service rep)
- Groups and organizations (teams, companies, communities)
- Fictional characters in discussions
Object Entities
- Physical items (documents, devices, vehicles)
- Digital assets (files, applications, accounts)
- Products and services (software tools, subscriptions)
- Abstract concepts (projects, ideas, methodologies)
Location Entities
- Geographic locations (cities, countries, addresses)
- Virtual spaces (websites, platforms, repositories)
- Organizational spaces (offices, departments, rooms)
- Conceptual spaces (markets, domains, fields)
Temporal Entities
- Events and meetings
- Deadlines and milestones
- Recurring schedules
- Historical periods
The Resolution Challenge
Same Entity, Different References
"John" → "John Smith" → "the project manager" → "my boss" → "JS"Different Entities, Similar References
"Apple" → Apple Inc. vs. the fruit vs. Apple Records
"Python" → programming language vs. snake vs. Monty Python
"Jordan" → Michael Jordan vs. country vs. river vs. person named JordanContext-Dependent Resolution
"He said the meeting is at 3" → Who is "he"? Which meeting? 3 AM or PM?
"Can you send it to me?" → What is "it"? Who is requesting?
"The API isn't working" → Which API? Which specific problem?Core Resolution Techniques
Technique 1: Coreference Resolution
Pronoun Resolution
def resolve_pronouns(text, entity_context):
pronouns = extract_pronouns(text)
resolved = {}
for pronoun in pronouns:
# Find candidate entities from context
candidates = find_candidate_entities(pronoun, entity_context)
# Score candidates based on various features
scores = {}
for candidate in candidates:
score = 0
score += distance_score(pronoun.position, candidate.last_mention)
score += gender_agreement_score(pronoun, candidate)
score += number_agreement_score(pronoun, candidate)
score += salience_score(candidate, entity_context)
scores[candidate] = score
# Select highest scoring candidate
best_match = max(scores.items(), key=lambda x: x[1])
resolved[pronoun] = best_match[0]
return resolvedDefinite Description Resolution
def resolve_definite_descriptions(text, knowledge_base):
descriptions = extract_definite_descriptions(text) # "the project", "the API"
resolved = {}
for desc in descriptions:
# Extract descriptive features
features = extract_features(desc) # noun, modifiers, context
# Query knowledge base for matching entities
candidates = knowledge_base.query_by_features(features)
# Rank by specificity and context relevance
scored_candidates = []
for candidate in candidates:
specificity = calculate_specificity_match(features, candidate)
relevance = calculate_context_relevance(desc, candidate)
score = combine_scores(specificity, relevance)
scored_candidates.append((candidate, score))
# Select best match above confidence threshold
if scored_candidates:
best_candidate, score = max(scored_candidates, key=lambda x: x[1])
if score > CONFIDENCE_THRESHOLD:
resolved[desc] = best_candidate
return resolvedTechnique 2: Named Entity Linking
Entity Mention Detection
def detect_entity_mentions(text):
mentions = []
# Use named entity recognition
ner_entities = ner_model.extract(text)
mentions.extend(ner_entities)
# Pattern-based extraction for domain-specific entities
custom_patterns = [
r'(?i)project\s+(\w+)', # "Project Alpha"
r'(?i)version\s+([\d.]+)', # "version 2.1.3"
r'(?i)ticket\s+#?(\d+)', # "ticket #1234"
]
for pattern in custom_patterns:
pattern_matches = re.finditer(pattern, text)
mentions.extend(pattern_matches)
# Noun phrase extraction for potential entities
noun_phrases = extract_noun_phrases(text)
mentions.extend(noun_phrases)
return mentionsEntity Linking Pipeline
def link_entities(mentions, knowledge_base):
linked_entities = []
for mention in mentions:
# Generate candidate entities
candidates = generate_candidates(mention, knowledge_base)
# Feature extraction for linking
features = extract_linking_features(mention, candidates)
# Ranking and selection
ranked_candidates = rank_candidates(candidates, features)
# Apply confidence threshold
if ranked_candidates and ranked_candidates[0].score > LINKING_THRESHOLD:
linked_entities.append({
'mention': mention,
'entity': ranked_candidates[0].entity,
'confidence': ranked_candidates[0].score
})
return linked_entities
def extract_linking_features(mention, candidates):
features = {}
for candidate in candidates:
features[candidate] = {
'string_similarity': calculate_string_similarity(mention.text, candidate.name),
'context_similarity': calculate_context_similarity(mention.context, candidate.description),
'entity_popularity': candidate.popularity_score,
'type_compatibility': check_type_compatibility(mention.type, candidate.type),
'temporal_relevance': calculate_temporal_relevance(mention.timestamp, candidate.last_updated)
}
return featuresTechnique 3: Cross-Reference Resolution
Multi-Modal Entity Matching
def resolve_cross_references(entity_mentions, conversation_context):
entity_groups = {}
for mention in entity_mentions:
# Find potential matches in existing groups
matched_group = None
best_score = 0
for group_id, group_entities in entity_groups.items():
score = calculate_group_match_score(mention, group_entities, conversation_context)
if score > best_score and score > MATCH_THRESHOLD:
matched_group = group_id
best_score = score
if matched_group:
# Add to existing group
entity_groups[matched_group].append(mention)
else:
# Create new group
new_group_id = generate_group_id()
entity_groups[new_group_id] = [mention]
return entity_groups
def calculate_group_match_score(mention, group_entities, context):
scores = []
for entity in group_entities:
# String similarity
string_score = fuzzy_string_match(mention.text, entity.text)
# Semantic similarity
semantic_score = semantic_similarity(mention.embedding, entity.embedding)
# Context compatibility
context_score = context_compatibility(mention, entity, context)
# Temporal proximity
temporal_score = temporal_proximity(mention.timestamp, entity.timestamp)
# Combine scores
combined_score = weighted_average([
(string_score, 0.3),
(semantic_score, 0.3),
(context_score, 0.25),
(temporal_score, 0.15)
])
scores.append(combined_score)
return max(scores) if scores else 0Advanced Resolution Strategies
Strategy 1: Probabilistic Entity Resolution
Bayesian Entity Matching
class BayesianEntityResolver:
def __init__(self):
self.prior_probabilities = {}
self.feature_likelihoods = {}
def calculate_match_probability(self, mention1, mention2, features):
# P(match | features) ∝ P(features | match) * P(match)
# Prior probability of any two mentions being the same entity
prior = self.get_prior_probability(mention1, mention2)
# Likelihood of observing features given they are the same entity
likelihood = 1.0
for feature, value in features.items():
feature_likelihood = self.get_feature_likelihood(feature, value, match=True)
likelihood *= feature_likelihood
# Evidence (normalization factor)
evidence = self.calculate_evidence(features)
posterior = (likelihood * prior) / evidence
return posterior
def get_prior_probability(self, mention1, mention2):
# Base rate depends on entity types and context
if mention1.type == mention2.type:
return self.prior_probabilities.get((mention1.type, mention2.type), 0.1)
return 0.01 # Low prior for different types
def update_probabilities(self, training_data):
# Update priors and likelihoods based on labeled examples
for example in training_data:
self._update_prior(example.mention1, example.mention2, example.is_match)
self._update_feature_likelihoods(example.features, example.is_match)Uncertainty Handling
def handle_resolution_uncertainty(candidates, confidence_scores):
# When confidence is low, maintain multiple hypotheses
if max(confidence_scores) < HIGH_CONFIDENCE_THRESHOLD:
# Return top N candidates with probabilities
return {
'resolution_type': 'ambiguous',
'candidates': [
{'entity': candidate, 'probability': score}
for candidate, score in zip(candidates, confidence_scores)
if score > MIN_PROBABILITY_THRESHOLD
],
'requires_clarification': True
}
else:
# High confidence resolution
best_idx = np.argmax(confidence_scores)
return {
'resolution_type': 'resolved',
'entity': candidates[best_idx],
'confidence': confidence_scores[best_idx],
'requires_clarification': False
}Strategy 2: Graph-Based Entity Resolution
Entity Relationship Graphs
class EntityRelationshipGraph:
def __init__(self):
self.entities = {}
self.relationships = {}
def add_entity(self, entity_id, entity_data):
self.entities[entity_id] = entity_data
def add_relationship(self, entity1_id, entity2_id, relationship_type, strength):
if entity1_id not in self.relationships:
self.relationships[entity1_id] = {}
self.relationships[entity1_id][entity2_id] = {
'type': relationship_type,
'strength': strength
}
def resolve_entity_with_graph(self, mention, context):
# Find candidate entities
candidates = self.find_candidate_entities(mention)
# Use graph structure to improve resolution
for candidate in candidates:
# Calculate relationship-based score
relationship_score = self.calculate_relationship_score(
candidate, context.recent_entities
)
# Combine with other features
candidate.total_score = combine_scores(
candidate.similarity_score,
relationship_score,
candidate.frequency_score
)
# Return highest scoring candidate
return max(candidates, key=lambda c: c.total_score)
def calculate_relationship_score(self, candidate, context_entities):
score = 0
for context_entity in context_entities:
if candidate.id in self.relationships.get(context_entity.id, {}):
relationship = self.relationships[context_entity.id][candidate.id]
score += relationship['strength'] * RELATIONSHIP_WEIGHT
return scoreGraph-Based Clustering
def cluster_entities_by_graph(entity_mentions, relationship_graph):
# Create similarity graph
similarity_graph = create_similarity_graph(entity_mentions)
# Add relationship-based edges
for mention1 in entity_mentions:
for mention2 in entity_mentions:
if mention1 != mention2:
relationship_strength = relationship_graph.get_strength(mention1, mention2)
if relationship_strength > RELATIONSHIP_THRESHOLD:
similarity_graph.add_edge(mention1, mention2, weight=relationship_strength)
# Apply graph clustering algorithm
clusters = apply_graph_clustering(similarity_graph)
# Convert clusters to entity groups
entity_groups = {}
for cluster_id, cluster_nodes in clusters.items():
entity_groups[cluster_id] = {
'mentions': cluster_nodes,
'canonical_entity': select_canonical_entity(cluster_nodes),
'confidence': calculate_cluster_confidence(cluster_nodes, similarity_graph)
}
return entity_groupsStrategy 3: Contextual Disambiguation
Context-Aware Resolution
class ContextualEntityResolver:
def __init__(self):
self.context_models = {}
def resolve_with_context(self, mention, conversation_context):
# Extract contextual features
context_features = self.extract_context_features(mention, conversation_context)
# Get domain-specific context model
domain = self.detect_domain(conversation_context)
context_model = self.context_models.get(domain, self.default_model)
# Score candidates using contextual model
candidates = self.get_candidate_entities(mention)
scored_candidates = []
for candidate in candidates:
context_score = context_model.score_candidate(candidate, context_features)
base_score = self.calculate_base_score(mention, candidate)
total_score = combine_scores(base_score, context_score)
scored_candidates.append((candidate, total_score))
return max(scored_candidates, key=lambda x: x[1])
def extract_context_features(self, mention, conversation_context):
features = {
'surrounding_entities': self.get_surrounding_entities(mention, conversation_context),
'topic_context': self.extract_topics(conversation_context),
'temporal_context': self.extract_temporal_context(conversation_context),
'user_context': self.extract_user_context(conversation_context),
'task_context': self.extract_task_context(conversation_context)
}
return featuresMulti-Turn Resolution
def resolve_across_turns(mention, conversation_history):
# Track entity mentions across conversation turns
historical_mentions = extract_historical_mentions(conversation_history)
# Build entity continuity graph
continuity_graph = build_continuity_graph(historical_mentions)
# Find potential antecedents for current mention
antecedent_candidates = find_antecedent_candidates(
mention, continuity_graph, conversation_history
)
# Score candidates based on recency, salience, and compatibility
scored_antecedents = []
for candidate in antecedent_candidates:
score = calculate_antecedent_score(mention, candidate, conversation_history)
scored_antecedents.append((candidate, score))
# Return best antecedent if confidence is high enough
if scored_antecedents:
best_antecedent, score = max(scored_antecedents, key=lambda x: x[1])
if score > ANTECEDENT_CONFIDENCE_THRESHOLD:
return best_antecedent
return None # No confident resolution found
def calculate_antecedent_score(mention, candidate, conversation_history):
# Distance-based decay
distance = calculate_mention_distance(mention, candidate, conversation_history)
recency_score = math.exp(-distance / RECENCY_DECAY_RATE)
# Salience based on mention frequency and importance
salience_score = calculate_mention_salience(candidate, conversation_history)
# Type and gender agreement
agreement_score = calculate_agreement_score(mention, candidate)
# Semantic compatibility
semantic_score = calculate_semantic_compatibility(mention, candidate)
return weighted_average([
(recency_score, 0.3),
(salience_score, 0.25),
(agreement_score, 0.25),
(semantic_score, 0.2)
])Disambiguation Strategies
Strategy 1: Interactive Clarification
Clarification Request Generation
def generate_clarification_request(ambiguous_mention, candidates):
# Determine the type of ambiguity
ambiguity_type = classify_ambiguity(ambiguous_mention, candidates)
if ambiguity_type == 'person_ambiguity':
return generate_person_clarification(ambiguous_mention, candidates)
elif ambiguity_type == 'object_ambiguity':
return generate_object_clarification(ambiguous_mention, candidates)
elif ambiguity_type == 'temporal_ambiguity':
return generate_temporal_clarification(ambiguous_mention, candidates)
else:
return generate_generic_clarification(ambiguous_mention, candidates)
def generate_person_clarification(mention, candidates):
# Create distinguishing questions
distinguishing_features = find_distinguishing_features(candidates)
if 'role' in distinguishing_features:
roles = [candidate.role for candidate in candidates]
return f"Which {mention.text} do you mean? The {' or the '.join(roles)}?"
elif 'location' in distinguishing_features:
locations = [candidate.location for candidate in candidates]
return f"Which {mention.text}? The one in {' or '.join(locations)}?"
else:
# Fallback to listing options
options = [candidate.description for candidate in candidates]
return f"I found multiple people named {mention.text}. Do you mean: {format_options(options)}?"Adaptive Clarification Strategy
class AdaptiveClarificationManager:
def __init__(self):
self.user_preferences = {}
self.clarification_history = {}
def should_request_clarification(self, mention, candidates, user_id):
# Check user preferences for disambiguation tolerance
tolerance = self.user_preferences.get(user_id, {}).get('ambiguity_tolerance', 0.5)
# Calculate ambiguity score
ambiguity_score = self.calculate_ambiguity_score(candidates)
# Check recent clarification frequency
recent_clarifications = self.get_recent_clarifications(user_id)
clarification_fatigue = min(len(recent_clarifications) / 10, 0.8)
# Adjust threshold based on context
adjusted_threshold = tolerance + clarification_fatigue
return ambiguity_score > adjusted_threshold
def learn_from_clarification_response(self, user_id, clarification, user_response):
# Update user preferences based on response patterns
if user_response.type == 'frustrated':
self.increase_tolerance(user_id)
elif user_response.type == 'appreciative':
self.decrease_tolerance(user_id)
# Store clarification for future reference
self.clarification_history[user_id].append({
'clarification': clarification,
'response': user_response,
'timestamp': datetime.now()
})Strategy 2: Context-Driven Disambiguation
Implicit Disambiguation
def disambiguate_implicitly(mention, candidates, conversation_context):
# Use conversation context to filter candidates
relevant_candidates = []
for candidate in candidates:
relevance_score = calculate_contextual_relevance(candidate, conversation_context)
if relevance_score > RELEVANCE_THRESHOLD:
relevant_candidates.append((candidate, relevance_score))
# If context sufficiently narrows candidates, resolve implicitly
if len(relevant_candidates) == 1:
return relevant_candidates[0][0]
elif len(relevant_candidates) > 1:
# Select most contextually relevant
return max(relevant_candidates, key=lambda x: x[1])[0]
else:
return None # Cannot disambiguate from context
def calculate_contextual_relevance(candidate, context):
relevance = 0
# Topic alignment
if context.current_topic:
topic_relevance = calculate_topic_alignment(candidate, context.current_topic)
relevance += topic_relevance * TOPIC_WEIGHT
# Recent entity co-occurrence
recent_entities = context.get_recent_entities()
for entity in recent_entities:
co_occurrence_score = calculate_co_occurrence(candidate, entity)
relevance += co_occurrence_score * CO_OCCURRENCE_WEIGHT
# Temporal relevance
temporal_relevance = calculate_temporal_relevance(candidate, context.current_time)
relevance += temporal_relevance * TEMPORAL_WEIGHT
return relevanceImplementation Patterns
Pattern 1: Entity Registry
Centralized Entity Management
class EntityRegistry:
def __init__(self):
self.entities = {}
self.aliases = {}
self.relationships = {}
self.resolution_cache = {}
def register_entity(self, entity_id, entity_data):
self.entities[entity_id] = entity_data
# Index aliases for quick lookup
for alias in entity_data.get('aliases', []):
if alias not in self.aliases:
self.aliases[alias] = []
self.aliases[alias].append(entity_id)
def resolve_mention(self, mention_text, context=None):
# Check cache first
cache_key = self.create_cache_key(mention_text, context)
if cache_key in self.resolution_cache:
return self.resolution_cache[cache_key]
# Find candidate entities
candidates = self.find_candidates(mention_text)
# Apply resolution algorithm
resolved_entity = self.apply_resolution_algorithm(
mention_text, candidates, context
)
# Cache result
self.resolution_cache[cache_key] = resolved_entity
return resolved_entity
def update_entity(self, entity_id, updates):
if entity_id in self.entities:
self.entities[entity_id].update(updates)
# Invalidate related cache entries
self.invalidate_cache_for_entity(entity_id)
def merge_entities(self, entity_id1, entity_id2):
# Combine entity data
entity1 = self.entities[entity_id1]
entity2 = self.entities[entity_id2]
merged_entity = self.merge_entity_data(entity1, entity2)
# Update registry
self.entities[entity_id1] = merged_entity
del self.entities[entity_id2]
# Update aliases and relationships
self.update_aliases_for_merge(entity_id1, entity_id2)
self.update_relationships_for_merge(entity_id1, entity_id2)
# Clear cache
self.resolution_cache.clear()Pattern 2: Resolution Pipeline
Multi-Stage Resolution Process
class EntityResolutionPipeline:
def __init__(self):
self.stages = [
ExactMatchStage(),
FuzzyMatchStage(),
SemanticMatchStage(),
ContextualResolutionStage(),
DisambiguationStage()
]
def resolve(self, mention, context):
resolution_result = ResolutionResult(mention, context)
for stage in self.stages:
resolution_result = stage.process(resolution_result)
# Early termination if high-confidence resolution found
if resolution_result.confidence > HIGH_CONFIDENCE_THRESHOLD:
break
# Skip remaining stages if no candidates remain
if not resolution_result.candidates:
break
return resolution_result
class ExactMatchStage(ResolutionStage):
def process(self, resolution_result):
exact_matches = []
for candidate in resolution_result.candidates:
if self.is_exact_match(resolution_result.mention, candidate):
exact_matches.append(candidate)
if exact_matches:
resolution_result.candidates = exact_matches
resolution_result.confidence *= EXACT_MATCH_BOOST
return resolution_result
class SemanticMatchStage(ResolutionStage):
def process(self, resolution_result):
mention_embedding = self.get_embedding(resolution_result.mention.text)
scored_candidates = []
for candidate in resolution_result.candidates:
candidate_embedding = self.get_embedding(candidate.canonical_name)
similarity = cosine_similarity(mention_embedding, candidate_embedding)
if similarity > SEMANTIC_THRESHOLD:
candidate.semantic_score = similarity
scored_candidates.append(candidate)
resolution_result.candidates = scored_candidates
return resolution_resultPattern 3: Hierarchical Entity Models
Multi-Level Entity Representation
class HierarchicalEntityModel:
def __init__(self):
self.entity_hierarchy = {}
self.type_hierarchies = {
'person': ['individual', 'role', 'group'],
'location': ['specific', 'general', 'virtual'],
'object': ['physical', 'digital', 'abstract']
}
def add_entity(self, entity_id, entity_type, parent_id=None):
self.entity_hierarchy[entity_id] = {
'type': entity_type,
'parent': parent_id,
'children': [],
'attributes': {}
}
if parent_id and parent_id in self.entity_hierarchy:
self.entity_hierarchy[parent_id]['children'].append(entity_id)
def resolve_at_appropriate_level(self, mention, context):
# Determine appropriate resolution granularity
required_specificity = self.determine_required_specificity(mention, context)
# Find candidates at different hierarchy levels
candidates_by_level = {}
for level in self.type_hierarchies[mention.type]:
candidates_by_level[level] = self.get_candidates_at_level(mention, level)
# Select level that best matches required specificity
target_level = self.select_target_level(required_specificity, candidates_by_level)
return self.resolve_at_level(mention, target_level, candidates_by_level[target_level])
def determine_required_specificity(self, mention, context):
specificity_indicators = {
'high': ['exact', 'specific', 'particular', 'that specific'],
'medium': ['the', 'this'],
'low': ['a', 'any', 'some']
}
for level, indicators in specificity_indicators.items():
if any(indicator in mention.context.lower() for indicator in indicators):
return level
return 'medium' # Default specificity levelEvaluation and Metrics
Resolution Quality Metrics
Accuracy Metrics
def evaluate_resolution_accuracy(test_cases):
correct_resolutions = 0
total_resolutions = 0
for test_case in test_cases:
predicted_entity = resolve_entity(test_case.mention, test_case.context)
ground_truth = test_case.ground_truth_entity
if predicted_entity == ground_truth:
correct_resolutions += 1
total_resolutions += 1
accuracy = correct_resolutions / total_resolutions
return accuracy
def evaluate_disambiguation_quality(test_cases):
metrics = {
'precision': 0,
'recall': 0,
'f1': 0,
'disambiguation_rate': 0
}
true_positives = 0
false_positives = 0
false_negatives = 0
successful_disambiguations = 0
for test_case in test_cases:
prediction = disambiguate_entity(test_case.mention, test_case.candidates)
ground_truth = test_case.correct_entity
if prediction == ground_truth:
true_positives += 1
successful_disambiguations += 1
elif prediction is not None:
false_positives += 1
else:
false_negatives += 1
metrics['precision'] = true_positives / (true_positives + false_positives)
metrics['recall'] = true_positives / (true_positives + false_negatives)
metrics['f1'] = 2 * (metrics['precision'] * metrics['recall']) / (metrics['precision'] + metrics['recall'])
metrics['disambiguation_rate'] = successful_disambiguations / len(test_cases)
return metricsPerformance Metrics
Efficiency Tracking
class ResolutionPerformanceTracker:
def __init__(self):
self.resolution_times = []
self.cache_hit_rates = []
self.memory_usage = []
def track_resolution(self, mention, resolution_time, cache_hit, memory_used):
self.resolution_times.append(resolution_time)
self.cache_hit_rates.append(1 if cache_hit else 0)
self.memory_usage.append(memory_used)
def get_performance_summary(self):
return {
'avg_resolution_time': np.mean(self.resolution_times),
'p95_resolution_time': np.percentile(self.resolution_times, 95),
'cache_hit_rate': np.mean(self.cache_hit_rates),
'avg_memory_usage': np.mean(self.memory_usage),
'total_resolutions': len(self.resolution_times)
}Best Practices
Design Principles
- Incremental Resolution: Start with simple techniques and add complexity as needed
- Context Awareness: Always consider the conversational and domain context
- User Feedback Integration: Learn from user corrections and clarifications
- Graceful Degradation: Handle ambiguity and uncertainty gracefully
- Privacy Preservation: Respect user privacy in entity tracking and storage
Implementation Guidelines
- Caching Strategy: Implement intelligent caching for frequently resolved entities
- Confidence Thresholds: Establish appropriate confidence thresholds for different use cases
- Error Handling: Plan for resolution failures and provide fallback mechanisms
- Performance Monitoring: Track resolution accuracy and performance metrics
- User Control: Allow users to correct entity resolutions and manage entity data
Common Pitfalls
- Over-Resolution: Attempting to resolve every mention when some ambiguity is acceptable
- Context Ignoring: Failing to use conversation context for disambiguation
- Static Models: Not adapting resolution strategies based on user feedback
- Privacy Violations: Storing too much identifying information about entities
- Performance Neglect: Not optimizing resolution for real-time conversation requirements
Next Steps
- Learn about Context Engineering to understand how resolved entities fit into agent context
- Explore State Continuity for maintaining entity knowledge across sessions
- Review Token Budgeting for efficient entity representation in limited context
- See Implementation Patterns for hands-on examples of entity resolution systems
Entity resolution and disambiguation are the foundation of sophisticated agent reasoning. Master these techniques to build agents that understand not just what users say, but who and what they’re talking about.