Vector Retrieval Pattern
The Vector Retrieval pattern uses embedding models to convert interactions into high-dimensional vectors, enabling semantic similarity search across the agent’s memory. This approach excels at finding contextually relevant information regardless of exact keyword matches.
Overview
The Vector Retrieval pattern transforms text, images, and other data into numerical vectors that capture semantic meaning. Key components include:
- Embedding Models: Convert raw data into dense vector representations
- Vector Databases: Store and index embeddings for fast similarity search
- Similarity Metrics: Compare vectors to find relevant content (cosine, dot product, L2)
- Retrieval Strategies: Query methods and result ranking approaches
This pattern is particularly powerful for finding relevant context in large datasets where keyword matching fails to capture semantic relationships.
Architecture
import numpy as np
from sentence_transformers import SentenceTransformer
import faiss
from typing import List, Dict, Tuple
class VectorRetrievalMemory:
def __init__(self, model_name="all-MiniLM-L6-v2", dimension=384):
self.embedding_model = SentenceTransformer(model_name)
self.dimension = dimension
self.index = faiss.IndexFlatIP(dimension) # Inner product for cosine similarity
self.interactions = []
self.metadata = []
def add_interaction(self, user_input: str, agent_response: str, metadata: Dict = None):
# Combine input and response for embedding
text = f"User: {user_input}\nAgent: {agent_response}"
# Generate embedding
embedding = self.embedding_model.encode([text])[0]
embedding = embedding / np.linalg.norm(embedding) # Normalize for cosine similarity
# Store in vector index
self.index.add(embedding.reshape(1, -1).astype('float32'))
# Store metadata
interaction_data = {
'user_input': user_input,
'agent_response': agent_response,
'metadata': metadata or {},
'interaction_id': len(self.interactions)
}
self.interactions.append(interaction_data)
self.metadata.append(metadata or {})
def retrieve_relevant(self, query: str, top_k: int = 5) -> List[Dict]:
if self.index.ntotal == 0:
return []
# Generate query embedding
query_embedding = self.embedding_model.encode([query])[0]
query_embedding = query_embedding / np.linalg.norm(query_embedding)
# Search for similar vectors
scores, indices = self.index.search(
query_embedding.reshape(1, -1).astype('float32'),
min(top_k, self.index.ntotal)
)
# Return ranked results
results = []
for score, idx in zip(scores[0], indices[0]):
if idx < len(self.interactions):
result = self.interactions[idx].copy()
result['similarity_score'] = float(score)
results.append(result)
return resultsImplementation Considerations
Embedding Model Selection
Local Models
# Lightweight models for resource-constrained environments
LIGHTWEIGHT_MODELS = {
"all-MiniLM-L6-v2": {"dimension": 384, "size": "22MB"},
"all-distilroberta-v1": {"dimension": 768, "size": "82MB"},
"paraphrase-MiniLM-L3-v2": {"dimension": 384, "size": "61MB"}
}
# High-quality models for better semantic understanding
HIGH_QUALITY_MODELS = {
"all-mpnet-base-v2": {"dimension": 768, "size": "420MB"},
"all-roberta-large-v1": {"dimension": 1024, "size": "1.4GB"}
}API-Based Models
class OpenAIEmbeddings:
def __init__(self, api_key: str):
self.api_key = api_key
self.dimension = 1536 # text-embedding-ada-002
def encode(self, texts: List[str]) -> np.ndarray:
import openai
openai.api_key = self.api_key
response = openai.Embedding.create(
input=texts,
model="text-embedding-ada-002"
)
embeddings = [item['embedding'] for item in response['data']]
return np.array(embeddings)Vector Database Options
FAISS (Facebook AI Similarity Search)
class FAISSVectorStore:
def __init__(self, dimension: int, use_gpu: bool = False):
if use_gpu:
res = faiss.StandardGpuResources()
self.index = faiss.index_cpu_to_gpu(res, 0,
faiss.IndexFlatIP(dimension))
else:
self.index = faiss.IndexFlatIP(dimension)
def add_vectors(self, vectors: np.ndarray):
self.index.add(vectors.astype('float32'))
def search(self, query: np.ndarray, k: int):
return self.index.search(query.astype('float32'), k)Pinecone (Cloud Vector Database)
class PineconeVectorStore:
def __init__(self, api_key: str, environment: str, index_name: str):
import pinecone
pinecone.init(api_key=api_key, environment=environment)
self.index = pinecone.Index(index_name)
def upsert(self, vectors: List[Tuple[str, List[float], Dict]]):
"""Upsert vectors with IDs and metadata"""
self.index.upsert(vectors=vectors)
def query(self, vector: List[float], top_k: int, filter: Dict = None):
return self.index.query(
vector=vector,
top_k=top_k,
filter=filter,
include_metadata=True
)Chroma (Open Source Vector Database)
class ChromaVectorStore:
def __init__(self, collection_name: str):
import chromadb
self.client = chromadb.Client()
self.collection = self.client.get_or_create_collection(
name=collection_name
)
def add_documents(self, documents: List[str], metadatas: List[Dict],
ids: List[str]):
self.collection.add(
documents=documents,
metadatas=metadatas,
ids=ids
)
def query(self, query_text: str, n_results: int = 5):
return self.collection.query(
query_texts=[query_text],
n_results=n_results
)Advanced Retrieval Strategies
Hybrid Search (Vector + Keyword)
class HybridRetrievalMemory:
def __init__(self):
self.vector_memory = VectorRetrievalMemory()
self.keyword_index = {} # Simple keyword index
def add_interaction(self, user_input: str, agent_response: str):
# Add to vector store
self.vector_memory.add_interaction(user_input, agent_response)
# Add to keyword index
interaction_id = len(self.vector_memory.interactions) - 1
words = (user_input + " " + agent_response).lower().split()
for word in words:
if word not in self.keyword_index:
self.keyword_index[word] = []
self.keyword_index[word].append(interaction_id)
def hybrid_retrieve(self, query: str, vector_weight: float = 0.7):
# Get vector results
vector_results = self.vector_memory.retrieve_relevant(query, top_k=10)
# Get keyword results
query_words = query.lower().split()
keyword_scores = {}
for word in query_words:
if word in self.keyword_index:
for interaction_id in self.keyword_index[word]:
keyword_scores[interaction_id] = keyword_scores.get(interaction_id, 0) + 1
# Combine scores
combined_results = []
for result in vector_results:
interaction_id = result['interaction_id']
vector_score = result['similarity_score']
keyword_score = keyword_scores.get(interaction_id, 0)
combined_score = (vector_weight * vector_score +
(1 - vector_weight) * keyword_score)
result['combined_score'] = combined_score
combined_results.append(result)
# Re-rank by combined score
combined_results.sort(key=lambda x: x['combined_score'], reverse=True)
return combined_resultsMulti-Vector Retrieval
class MultiVectorMemory:
def __init__(self):
self.input_embeddings = VectorRetrievalMemory()
self.response_embeddings = VectorRetrievalMemory()
self.context_embeddings = VectorRetrievalMemory()
def add_interaction(self, user_input: str, agent_response: str, context: str = None):
interaction_id = len(self.input_embeddings.interactions)
# Store separate embeddings for different aspects
self.input_embeddings.add_interaction(user_input, "", {"type": "input"})
self.response_embeddings.add_interaction("", agent_response, {"type": "response"})
if context:
self.context_embeddings.add_interaction(context, "", {"type": "context"})
def retrieve_by_aspect(self, query: str, aspect: str = "input", top_k: int = 5):
if aspect == "input":
return self.input_embeddings.retrieve_relevant(query, top_k)
elif aspect == "response":
return self.response_embeddings.retrieve_relevant(query, top_k)
elif aspect == "context":
return self.context_embeddings.retrieve_relevant(query, top_k)
else:
raise ValueError(f"Unknown aspect: {aspect}")Performance Characteristics
Pros
- Semantic Understanding: Finds conceptually similar content
- Language Agnostic: Works across different phrasings
- Scalable Search: Efficient retrieval from large datasets
- Fuzzy Matching: Handles typos and variations gracefully
- Cross-Modal: Can work with text, images, audio (with appropriate models)
Cons
- Computational Overhead: Embedding generation and storage costs
- Model Dependency: Quality depends on embedding model choice
- Cold Start: Requires sufficient data for meaningful similarities
- Dimensionality Curse: High-dimensional spaces can have unintuitive properties
- Embedding Drift: Model updates can invalidate stored embeddings
Performance Metrics
# Typical performance characteristics
EMBEDDING_TIME = "O(n)" # Linear in text length
INDEX_SEARCH = "O(log n)" # With approximate algorithms
STORAGE_OVERHEAD = "4-8x" # Compared to raw text storage
ACCURACY = "0.8-0.95" # Semantic similarity tasks
LATENCY = "10-100ms" # Per query, depending on index sizeWhen to Use
Ideal Scenarios
- Large knowledge bases with diverse content
- Conversational agents needing contextual understanding
- FAQ systems where questions vary in phrasing
- Content recommendation based on user interests
- Multi-language applications with semantic search needs
Not Recommended For
- Exact match requirements where precision is critical
- Small datasets where simple keyword search suffices
- Real-time systems with strict latency constraints
- Resource-constrained environments without GPU/sufficient RAM
Implementation Examples
Production-Ready Vector Memory
class ProductionVectorMemory:
def __init__(self, config):
self.embedding_model = self._load_embedding_model(config.model_name)
self.vector_store = self._init_vector_store(config.vector_db_config)
self.metadata_store = self._init_metadata_store(config.metadata_db_config)
self.cache = LRUCache(maxsize=config.cache_size)
def add_interaction(self, interaction_data):
# Generate embedding with error handling
try:
text = self._format_for_embedding(interaction_data)
embedding = self.embedding_model.encode([text])[0]
except Exception as e:
logger.error(f"Embedding generation failed: {e}")
return False
# Store with transaction safety
interaction_id = str(uuid.uuid4())
try:
# Store vector
self.vector_store.upsert([
(interaction_id, embedding.tolist(), {"timestamp": time.time()})
])
# Store metadata
self.metadata_store.put(interaction_id, interaction_data)
# Update cache
self.cache[interaction_id] = interaction_data
return True
except Exception as e:
logger.error(f"Storage failed: {e}")
return False
def retrieve_with_filters(self, query: str, filters: Dict = None,
top_k: int = 5) -> List[Dict]:
# Check cache first
cache_key = f"{query}:{filters}:{top_k}"
if cache_key in self.cache:
return self.cache[cache_key]
# Generate query embedding
query_embedding = self.embedding_model.encode([query])[0]
# Search with filters
results = self.vector_store.query(
vector=query_embedding.tolist(),
top_k=top_k,
filter=filters
)
# Enrich with metadata
enriched_results = []
for match in results['matches']:
metadata = self.metadata_store.get(match['id'])
if metadata:
result = metadata.copy()
result['similarity_score'] = match['score']
enriched_results.append(result)
# Cache results
self.cache[cache_key] = enriched_results
return enriched_resultsMulti-Modal Vector Memory
class MultiModalVectorMemory:
def __init__(self):
self.text_embedder = SentenceTransformer('all-MiniLM-L6-v2')
self.image_embedder = SentenceTransformer('clip-ViT-B-32')
self.text_index = faiss.IndexFlatIP(384)
self.image_index = faiss.IndexFlatIP(512)
def add_text_interaction(self, text: str, metadata: Dict):
embedding = self.text_embedder.encode([text])[0]
embedding = embedding / np.linalg.norm(embedding)
self.text_index.add(embedding.reshape(1, -1).astype('float32'))
def add_image_interaction(self, image_path: str, description: str):
from PIL import Image
image = Image.open(image_path)
embedding = self.image_embedder.encode([image])[0]
embedding = embedding / np.linalg.norm(embedding)
self.image_index.add(embedding.reshape(1, -1).astype('float32'))
def search_cross_modal(self, text_query: str, search_images: bool = True):
# Search text with text query
text_embedding = self.text_embedder.encode([text_query])[0]
text_embedding = text_embedding / np.linalg.norm(text_embedding)
text_scores, text_indices = self.text_index.search(
text_embedding.reshape(1, -1).astype('float32'), 5
)
results = {'text_results': list(zip(text_scores[0], text_indices[0]))}
# Cross-modal search: text query -> image results
if search_images:
# Use CLIP's shared embedding space
image_embedding = self.image_embedder.encode([text_query])[0]
image_embedding = image_embedding / np.linalg.norm(image_embedding)
image_scores, image_indices = self.image_index.search(
image_embedding.reshape(1, -1).astype('float32'), 5
)
results['image_results'] = list(zip(image_scores[0], image_indices[0]))
return resultsContextual Re-ranking
class ContextualVectorMemory:
def __init__(self):
self.base_memory = VectorRetrievalMemory()
self.conversation_context = deque(maxlen=10)
def add_interaction(self, user_input: str, agent_response: str):
self.base_memory.add_interaction(user_input, agent_response)
self.conversation_context.append({
'user_input': user_input,
'agent_response': agent_response
})
def contextual_retrieve(self, query: str, top_k: int = 10):
# Get initial candidates
candidates = self.base_memory.retrieve_relevant(query, top_k * 2)
# Re-rank based on conversation context
context_text = " ".join([
f"{turn['user_input']} {turn['agent_response']}"
for turn in self.conversation_context
])
reranked_results = []
for candidate in candidates:
# Calculate contextual relevance
candidate_text = f"{candidate['user_input']} {candidate['agent_response']}"
# Combine original similarity with contextual similarity
context_embedding = self.base_memory.embedding_model.encode([context_text])[0]
candidate_embedding = self.base_memory.embedding_model.encode([candidate_text])[0]
context_similarity = np.dot(context_embedding, candidate_embedding) / (
np.linalg.norm(context_embedding) * np.linalg.norm(candidate_embedding)
)
# Weighted combination
final_score = 0.7 * candidate['similarity_score'] + 0.3 * context_similarity
candidate['contextual_score'] = final_score
reranked_results.append(candidate)
# Sort by contextual score
reranked_results.sort(key=lambda x: x['contextual_score'], reverse=True)
return reranked_results[:top_k]Best Practices
Embedding Optimization
def optimize_embeddings(texts: List[str], max_length: int = 512):
"""Optimize texts for embedding generation"""
optimized = []
for text in texts:
# Truncate long texts
if len(text.split()) > max_length:
words = text.split()[:max_length]
text = " ".join(words) + "..."
# Clean and normalize
text = text.strip().replace('\n', ' ').replace('\t', ' ')
# Remove extra whitespace
import re
text = re.sub(r'\s+', ' ', text)
optimized.append(text)
return optimizedIndex Management
class ManagedVectorIndex:
def __init__(self, dimension: int, max_size: int = 1000000):
self.dimension = dimension
self.max_size = max_size
self.index = faiss.IndexFlatIP(dimension)
self.metadata = []
def add_with_overflow_handling(self, vectors: np.ndarray, metadata: List[Dict]):
if self.index.ntotal + len(vectors) > self.max_size:
# Implement overflow strategy
self._handle_overflow(len(vectors))
self.index.add(vectors.astype('float32'))
self.metadata.extend(metadata)
def _handle_overflow(self, new_count: int):
# Strategy 1: Remove oldest entries
remove_count = new_count
self.metadata = self.metadata[remove_count:]
# Rebuild index (expensive but necessary for FAISS)
remaining_vectors = self._extract_vectors(remove_count)
self.index = faiss.IndexFlatIP(self.dimension)
self.index.add(remaining_vectors)
def save_index(self, path: str):
faiss.write_index(self.index, f"{path}/vector.index")
import pickle
with open(f"{path}/metadata.pkl", 'wb') as f:
pickle.dump(self.metadata, f)
def load_index(self, path: str):
self.index = faiss.read_index(f"{path}/vector.index")
import pickle
with open(f"{path}/metadata.pkl", 'rb') as f:
self.metadata = pickle.load(f)Quality Monitoring
class VectorQualityMonitor:
def __init__(self, vector_memory):
self.memory = vector_memory
self.quality_metrics = {
'embedding_variance': [],
'similarity_distributions': [],
'retrieval_accuracy': []
}
def monitor_embedding_quality(self, new_embeddings: np.ndarray):
# Check for embedding degradation
variance = np.var(new_embeddings, axis=1).mean()
self.quality_metrics['embedding_variance'].append(variance)
# Check for clustering
mean_similarity = np.mean(np.dot(new_embeddings, new_embeddings.T))
self.quality_metrics['similarity_distributions'].append(mean_similarity)
# Alert if quality drops
if variance < 0.01: # Low variance indicates poor embeddings
logger.warning("Low embedding variance detected")
def evaluate_retrieval_quality(self, test_queries: List[str],
expected_results: List[List[str]]):
"""Evaluate retrieval quality with ground truth"""
total_precision = 0
total_recall = 0
for query, expected in zip(test_queries, expected_results):
retrieved = self.memory.retrieve_relevant(query, top_k=10)
retrieved_ids = [r['interaction_id'] for r in retrieved]
# Calculate precision and recall
relevant_retrieved = set(retrieved_ids) & set(expected)
precision = len(relevant_retrieved) / len(retrieved_ids) if retrieved_ids else 0
recall = len(relevant_retrieved) / len(expected) if expected else 0
total_precision += precision
total_recall += recall
avg_precision = total_precision / len(test_queries)
avg_recall = total_recall / len(test_queries)
self.quality_metrics['retrieval_accuracy'].append({
'precision': avg_precision,
'recall': avg_recall,
'f1': 2 * (avg_precision * avg_recall) / (avg_precision + avg_recall)
})Integration with Other Patterns
Vector + Sliding Window Hybrid
class VectorSlidingHybrid:
def __init__(self, window_size: int = 50, vector_k: int = 10):
self.sliding_window = SlidingWindowMemory(max_size=window_size)
self.vector_memory = VectorRetrievalMemory()
self.vector_k = vector_k
def add_interaction(self, user_input: str, agent_response: str):
# Add to both memories
self.sliding_window.add_interaction(user_input, agent_response)
self.vector_memory.add_interaction(user_input, agent_response)
def retrieve_context(self, query: str):
# Get recent context from sliding window
recent_context = self.sliding_window.get_context(limit=10)
# Get semantically relevant context from vector memory
relevant_context = self.vector_memory.retrieve_relevant(query, self.vector_k)
# Combine and deduplicate
combined_context = self._merge_contexts(recent_context, relevant_context)
return combined_context
def _merge_contexts(self, recent: List[Dict], relevant: List[Dict]):
# Simple deduplication and merging strategy
seen_interactions = set()
merged = []
# Prioritize recent context
for interaction in recent:
key = (interaction['user_input'], interaction['agent_response'])
if key not in seen_interactions:
interaction['source'] = 'recent'
merged.append(interaction)
seen_interactions.add(key)
# Add relevant context not already included
for interaction in relevant:
key = (interaction['user_input'], interaction['agent_response'])
if key not in seen_interactions:
interaction['source'] = 'semantic'
merged.append(interaction)
seen_interactions.add(key)
return mergedVector + Graph Memory Integration
class VectorGraphMemory:
def __init__(self):
self.vector_memory = VectorRetrievalMemory()
self.graph_memory = GraphMemory() # Assume this exists
def add_interaction_with_entities(self, user_input: str, agent_response: str):
# Extract entities and relationships
entities = self._extract_entities(user_input, agent_response)
relationships = self._extract_relationships(user_input, agent_response)
# Add to vector memory
self.vector_memory.add_interaction(user_input, agent_response)
# Add to graph memory
for entity in entities:
self.graph_memory.add_entity(entity)
for rel in relationships:
self.graph_memory.add_relationship(rel['source'], rel['target'], rel['type'])
def retrieve_with_graph_expansion(self, query: str, expand_hops: int = 2):
# Get initial vector results
vector_results = self.vector_memory.retrieve_relevant(query, top_k=5)
# Extract entities from results
result_entities = []
for result in vector_results:
entities = self._extract_entities(result['user_input'], result['agent_response'])
result_entities.extend(entities)
# Expand through graph relationships
expanded_entities = self.graph_memory.expand_entities(result_entities, expand_hops)
# Find interactions involving expanded entities
expanded_results = []
for entity in expanded_entities:
entity_interactions = self.vector_memory.search_by_entity(entity)
expanded_results.extend(entity_interactions)
# Combine and rank results
return self._rank_combined_results(vector_results, expanded_results)Testing and Validation
Unit Tests
import pytest
import numpy as np
def test_vector_memory_basic_operations():
memory = VectorRetrievalMemory()
# Test adding interactions
memory.add_interaction("What is Python?", "Python is a programming language.")
memory.add_interaction("How do I write a loop?", "Use for or while statements.")
assert len(memory.interactions) == 2
assert memory.index.ntotal == 2
def test_similarity_retrieval():
memory = VectorRetrievalMemory()
# Add related interactions
memory.add_interaction("What is machine learning?", "ML is AI subset.")
memory.add_interaction("Explain neural networks", "Networks mimic brain.")
memory.add_interaction("What's for dinner?", "I suggest pasta.")
# Query for ML-related content
results = memory.retrieve_relevant("Tell me about AI", top_k=2)
# Should return ML and neural network interactions
assert len(results) == 2
assert results[0]['similarity_score'] > results[1]['similarity_score']
def test_embedding_normalization():
memory = VectorRetrievalMemory()
text = "Test interaction"
embedding = memory.embedding_model.encode([text])[0]
normalized = embedding / np.linalg.norm(embedding)
# Check normalization
assert abs(np.linalg.norm(normalized) - 1.0) < 1e-6
def test_empty_index_handling():
memory = VectorRetrievalMemory()
# Should handle empty index gracefully
results = memory.retrieve_relevant("Any query", top_k=5)
assert results == []Performance Tests
def test_vector_memory_performance():
import time
memory = VectorRetrievalMemory()
# Test insertion performance
start_time = time.time()
for i in range(1000):
memory.add_interaction(f"Question {i}", f"Answer {i}")
insertion_time = time.time() - start_time
print(f"Insertion time: {insertion_time:.2f}s for 1000 interactions")
print(f"Rate: {1000/insertion_time:.0f} interactions/second")
# Test retrieval performance
start_time = time.time()
for i in range(100):
results = memory.retrieve_relevant(f"Test query {i}", top_k=10)
retrieval_time = time.time() - start_time
print(f"Retrieval time: {retrieval_time:.2f}s for 100 queries")
print(f"Rate: {100/retrieval_time:.0f} queries/second")
def test_memory_usage():
import psutil
import os
process = psutil.Process(os.getpid())
initial_memory = process.memory_info().rss
memory = VectorRetrievalMemory()
# Add many interactions
for i in range(10000):
memory.add_interaction(f"Input {i}", f"Output {i}")
final_memory = process.memory_info().rss
memory_growth = (final_memory - initial_memory) / (1024 * 1024) # MB
print(f"Memory growth: {memory_growth:.2f} MB for 10k interactions")
print(f"Memory per interaction: {memory_growth / 10000 * 1024:.2f} KB")Migration and Scaling
Migration from Other Patterns
def migrate_to_vector_memory(source_memory, embedding_model_name: str):
"""Migrate from any memory pattern to vector memory"""
vector_memory = VectorRetrievalMemory(model_name=embedding_model_name)
# Get all interactions from source
if hasattr(source_memory, 'get_all_interactions'):
interactions = source_memory.get_all_interactions()
else:
# Handle different source types
interactions = source_memory.interactions
# Convert to vector memory
for interaction in interactions:
vector_memory.add_interaction(
interaction['user_input'],
interaction['agent_response'],
interaction.get('metadata', {})
)
return vector_memoryDistributed Vector Memory
class DistributedVectorMemory:
def __init__(self, shard_count: int = 4):
self.shards = [VectorRetrievalMemory() for _ in range(shard_count)]
self.shard_count = shard_count
def add_interaction(self, user_input: str, agent_response: str, user_id: str = None):
# Shard based on user ID or hash of input
shard_key = user_id or user_input
shard_id = hash(shard_key) % self.shard_count
self.shards[shard_id].add_interaction(user_input, agent_response)
def retrieve_relevant(self, query: str, top_k: int = 5, user_id: str = None):
if user_id:
# Query specific shard
shard_id = hash(user_id) % self.shard_count
return self.shards[shard_id].retrieve_relevant(query, top_k)
else:
# Query all shards and merge results
all_results = []
for shard in self.shards:
shard_results = shard.retrieve_relevant(query, top_k)
all_results.extend(shard_results)
# Re-rank and return top-k
all_results.sort(key=lambda x: x['similarity_score'], reverse=True)
return all_results[:top_k]Related Patterns
- Full History: Use vector retrieval to search complete history
- Sliding Window: Combine with vectors for recent + relevant context
- Graph Memory: Enhance graph traversal with vector similarity
- Hierarchical Memory: Use vectors at different hierarchy levels
- Hybrid Approaches: Primary component in many hybrid systems
Next Steps
- Choose appropriate embedding model for your domain
- Select vector database based on scale and requirements
- Implement similarity search with your data
- Evaluate retrieval quality with test queries
- Optimize embedding and indexing parameters
- Plan for scaling and production deployment
- Consider hybrid approaches with other memory patterns
The Vector Retrieval pattern provides powerful semantic search capabilities that can dramatically improve the relevance of retrieved context in agent applications.